

Document 4

Cells of the Immune System

-What are the cells of the immune system and what are their characteristics?

Components of Blood

Video Time

Components of Blood

The blood circulates in blood vessels. It has **two components**: the **fluid (liquid) component** and the **cellular component**. The **liquid component**, called **plasma**, is made of water, nutrients, salts, and proteins. The **other component** contains **red blood cells (R.B.C)**, **white blood cells (W.B.C)**, and **platelets**.

Document 1 shows the components of the blood in the blood vessel.

Document 2 shows the separation of blood components after centrifugation.

-Document 1 shows the role of different blood components.

• The different blood components are:

- 1. White blood cells (leukocytes):
- Are nucleated cells
- Role: They are immune cells, that protect our body from infections and diseases.
- 2./Red blood Cells (R.B.C) or Erythrocytes:
 - Disc shaped with no nucleus.
 - Role: transports O₂ & CO₂ to and from all the body cells

- 3. Platelets: Involved in blood clotting (prevent bleeding).
- 4. Plasma: liquid part of the blood.
- Doc.a, p.121 shows a stained blood smear.

Immune System

I. Cells

(White blood cells

or leukocytes)

-Monocytes

Granulocyte

Lymphocytes

II. Molecules

 They are antibodies released by B lymphoytes

III.Organs

- Red bone marrow

*Primary Organs:

- Thymus

*Secondary organs:

- Spleen
- Lymph nodes

B lymphoctes T-lymphocytes

I. Cells of the Immune System:

Be Smart ACADEMY

White blood cells

The Different Leukocyte Population

- Bone marrow is the site of production of all white blood cells.
- All leukocytes derive from the same progenitor.
 - They belong to two different lineages: I. Myeloid or II. Lymphoid stem cells.

I. Myeloid Stem Cells:

- Leukocytes that derive from myeloid stem cells are:
 - 1- Monocytes
 - 2- Granulocytes
 - 3- Mast cells.

1) Monocytes:

- **Structure:** They have horse-shoe shaped nucleus.

Role: They play a role in non-specific immune response, where they attack all microbes in the same way by a process called phagocytosis.

They can cross the capillary wall to the infected tissue.

They differentiate into macrophages to be able to attack the non-self.

2) Granulocytes:

- **Structure:** They have polylobed nucleus.

- They represent 67% of all the leukocytes and live for 2-3 days.
- **Role:** They play a role in non-specific immune response, where they attack all microbes in the same way by a process called phagocytosis.
 - They can cross the capillary wall to the infected tissue.

→ Granulocytes have 3 subpopulations:

- **2.1- Neutrophils:** They perform phagocytosis and destruction of bacteria.
- **2.2- Eosinophils:** They perform phagocytosis of antigen antibodies complex.
- **2.3** Basophils: They play a role in allergic reaction.

3) Mast cells:

They play a role in allergic reaction (release of histamine).

II. Lymphoid Stem cells:

Be Smart ACADEMY

- They are B-cells and T-cells.
- **Structure:** They have big round nucleus.
- Both B and T-cells are involved in specific immunity.
- B and T lymphocytes can be distinguished by their receptors.

1) T-lymphocytes: They are T4 and T8

1.1-T4:

- They are T Helper cells.
- They help in all immune responses: they activate B-cells and TC cells.
 - They have receptor molecules on their membrane called TCR.
- They carry specific proteins on their membrane called CD4 (that's why they are called T4).

1.2-T8

- They are the effector cells of Specific Cell Mediated Immune Response.
- They have receptor molecules called TCR and protein on their membrane called CD8 (that's why they are called T8 lymphocytes).
- -They are activated by TH.
- Upon activation, T8 cells become cytotoxic killer cells Tc that attack specific target.

\rightarrow Target of Tc –cells:

- 1- Infected cells (by virus)
- 2- Self-modified cells (cancer cells)
- 3- Rejected graft.

ACADEMY

2) B-lymphocytes:

- **Role:** They can recognize free or soluble antigens. ex: bacteria
- They have receptor molecules on their membrane called antibodies (Y-shaped).
- Antibodies are specific, they bind to antigens in a key and lock manner.

There are million types of B-cells, each is specific to a certain email antigen.

⇒ They play a role in the specific humoral immune response.

- When they are activated by TH cells, B-cells differentiate into antibody secreting cells called plasma cells that secrete antibodies that circulate in plasma.

